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Several aspects of hybrid methods resulting from combining multiconfigurational (MC) wave functions with
correlation energy functionals are discussed, in particular for a family of functionals recently proposed.1,2 It
is found that adding the correlation at the end of a MC calculation instead of including it in the self-consistent
procedure constitutes an excellent approximation. MC potential energy curves and spectroscopic constants
show a significant improvement after being corrected with correlation energies from this family of functionals.

1. Introduction

Reliable potential energy surfaces are crucial for chemical
simulations. Since high-quality descriptions such as full-CI wave
functions are out of the question for most systems, it would be
particularly interesting to develop a hybrid scheme combining
qualitatively correct multiconfigurational (MC) wave functions
with cheap but accurate approximations to the unaccounted
correlation energy.

These qualitatively correct wave functions have to be sought
beyond the monoconfigurational Hartree-Fock (HF) method,
which gives a poor description3 of bond dissociation. For
example, for the H2 molecule, the restricted HF model (RHF)
severely overestimates the dissociation energy, while the
unrestricted HF model (UHF) breaks the spin symmetry. A
biconfigurational general valence bond4 (GVB) treatment of the
same molecule gives, on the other hand, a rather good
description of the bond, includingproper dissociation5 into
atomic fragments.

Correlation energy is the difference between the exact and
HF energies. Density-functional theory6,7 (DFT) provides ac-
curate estimates of the correlation energy at a reasonable cost,
through approximations to thecorrelation energy functional Ec-
[F], whereF is the electron density (for a review on common
approximations, see, for example, ref 8). A particularly simple
approach is theHartree-Fock-Kohn-Sham method7,9-13

(HFKS), where the exact energy is expressed as the HF
functional EHF[F] plus the DFT correlation energy functional

An appealing feature of theEc[F] is the possibility of imple-
menting it within a post-SCF step,14 because correlation is a
small perturbation that can be added afterward in a non-SCF
fashion. Practical experience shows that the following ap-
proximation is very accurate12,15-17

so that it is possible to obtain good estimates of the exact energy
by adding the correlation energy obtained from the HF density

FHF to the HF energy. The main advantage of such a post-SCF
procedure is that the functional derivativeδEc[F]/δF is not
needed.

Although quite good for atoms,18 the HFKS method does not
seem to be much of an improvement over the HF method for
molecular spectroscopic constants such as equilibrium distances
or vibrational frequencies.19 The reason is, as we have said, the
poor behavior of the HF method for bond dissociation. One
would expect that the use of MC wave functions instead of the
HF determinant would yield better results

whereEc,MC is, by definition, the difference between the exact
and MC energies. Conventional DFTEc[F] functionals cannot
be expected to provide a very good approximation toEc,MC

becauseEc,MC is only a fraction of the total correlation energy.
Approximations1,2,20-39 to Ec,MC typically depend on quantities

such as natural orbitals or reduced density matrices.40 Often they
are expressed as functionals of thereduced density matrix of
second orderΓ

These functionals can be applied indistinctly to mono- or
multiconfigurationalΓ’s. For example, ifΓHF andΓMC come,
respectively, from HF and MC wave functions, thenEc[ΓHF] is
a good approximation toEc[FHF] and Ec[ΓMC] is a good
approximation toEc,MC.

Recently, in our laboratory, a family ofEc[Γ] functionals has
been developed.1,2,38 Results over atomicΓHF’s have been
encouraging so far. The goal of the present study is twofold.
First, we will check this family of functionals over molecular
ΓMC’s. Second, we will check if a post-SCF procedure analogous
to eq 2 is also accurate forEc[Γ].

2. Self-Consistent Calculations for GVB Wave Functions

In order to check the accuracy of the post-SCF scheme, we
need, as a reference, a self-consistent procedure for GVB wave
functions. We briefly outline it next. For simplicity, we will
restrict ourselves to the H2 molecule and to this wave function,* Corresponding author. Email: sanfa@fisic1.ua.es.

Eexact) EHF[F] + Ec[F] (1)

EHF[F] + Ec[F] ≈ EHF + Ec[FHF] (2)

Eexact≡ EMC + Ec,MC (3)

Ec,MC ≈ Ec[Γ] (4)
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although we are working on other larger systems and more
sophisticated wave functions.

For hydrogen, the GVB wave function3,4 is composed of two
determinants

where the symbol|φiφh i〉 denotes a Slater determinant,φ1 and
φ2 are R orbitals, and areφh1 and φh2 their respectiveâ
counterparts.

A self-consistent calculation for the previous wave function
is carried out in two steps. During the first step, the coefficients
Ci are kept fixed while the orbitals are optimized. During the
second step, the situation is reversed, and the orbitals are kept
fixed while the coefficients are optimized. These two steps are
repeated iteratively until self-consistency is achieved.

The first step is carried by means of a Fock-like operator
(note, however, that unlike the HF operator, this GVB operator
takes a different form for each orbital). The correlation
functional Ec[Γ] enters the calculations here, as a correlation
potential that is added to the Fock-like operator. The correlation
potential is the functional derivative ofEc[Γ] with respect to
φi, δEc[Γ]/δφi. The explicit form of this potential for our family
of functionals1,2 is given in ref 2.

The second step, the optimization of the coefficients, is simply
the minimization of

while the orbitals are kept constant and whereĤ is the
Hamiltonian operator. It is carried out by diagonalization of the
2 × 2 matrix H, with elements

We explain next how to include, in an approximate way, the
contribution from the correlation functional to the optimization
of the coefficients.

Our approximation1,2 to Ec[Γ] depends onΓ through theon-
top densityF2(r ), which can be expressed as

(Löwdin criterion40 is assumed) or, alternatively, as

Ec[Γ] is given1,2 by

whereI(r ) is a function with explicit dependence onF andF2.
Taking into account eq 9, we can rewriteEc[Γ] as

Comparison with eq 6 would suggest that diagonalization of
the 2× 2 matrix H′ with elements

would yield the optimum coefficients. This is not strictly so,
becauseI(r ) depends explicitly on the coefficients that are being
optimized. We will assume, however, that this dependence is
weak and can be neglected. As we will see in the next section,
inclusion of correlation in a self-consistent fashion has very little
effect on the results. We do not believe that consideration of

the explicit dependence ofI(r ) on the coefficients will change
this conclusion.

3. Results and Conclusions

In this section we present some results for the H2 molecule.
All the calculations in Table 1 and Figures 1 and 2 have been
carried out with the package GAMESS,41 using the basis set
aug-cc-pVQZ.42 The correlation energy is evaluated by numer-
ical integration.43 “GVB” refers to a GVB calculation, “GVB+‚
‚‚” is a GVB calculation corrected by adding a given correlation
energy model in a post-SCF non-self-consistent fashion, and
“GVB+‚‚‚(SCF)” denotes the analogous calculation but with
the correlation included in the SCF procedure, in the way
explained in the previous section. The ellipsis may stand for
“CS” (Colle-Salvetti23), “MPJ1” (Moscardo´ and Pe´rez-Jiménez,
level 11,2), or “MPJ5” (Moscardo´ and Pe´rez-Jiménez, level 51,2).
Entries labeled “exact”, used here as a reference, come from
the work of Kolos and Wolniewicz.44

ΨGVB ) C1|φ1φh1〉 + C2|φ2φh2〉 (5)

〈ΨGVB|Ĥ|ΨGVB〉 (6)

Hij ) 〈φiφh i|Ĥ|φjφh j〉 (7)

F2(r ) ) ∫ Γ(rσ1, rσ2; rσ1, rσ2) dσ1dσ2 (8)

F2(r ) ) 〈ΨGVB|δ(r - r 1) δ(r - r 2)|ΨGVB〉 (9)

Ec[Γ] ) 2π ∫ F2(r ) I (r ) dr (10)

Ec[Γ] ) 2π 〈ΨGVB| I(r 1) δ(r 1 - r 2)|ΨGVB〉 (11)

H′ij ) Hij + 2π 〈φiφh i|I(r 1) δ(r 1 - r 2)|φjφh j〉 (12)

TABLE 1: Spectroscopic Constants for the H2 Molecule

Re (au) ωe (cm-1) De (eV)

GVB 1.426 4226 4.142
GVB+CS 1.411 4340 4.725
GVB+MPJ1 1.409 4358 4.753
GVB+MPJ1 (SCF) 1.409 4354 4.751
GVB+MPJ5 1.400 4429 4.937
GVB+MPJ5 (SCF) 1.400 4422 4.938
exact 1.401 4405 4.748

Figure 1. Potential energy curves for the H2 molecule.

Figure 2. Difference,δF, between GVB+MPJ1 (SCF) and GVB+MPJ1
densities atR ) 1.40 au (both axes in au).
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The spectroscopic constants in Table 1 and the curves in
Figure 1 have been obtained from sets of energy-distance points
on the potential energy curve, ranging from 0.7 to 10.0 au at
intervals of 0.1 au, giving a total of 94 points. The spectroscopic
constants have been computed from a least-squares fit of the
94 points to a polynomial in the variable45

whereR is the internuclear distance andR0 is an adjustable
parameter. The order of the fitting polynomial and the value of
R0 have been optimized so that they minimize the round-off
error. An identical technique has been applied to the “exact”
data points from Kolos and Wolniewicz’s44 paper. We have
applied the same procedure to half the data points (even points)
in order to check the accuracy of our values. We feel confident
that all the constants shown in Table 1 are correct, except
perhaps the last digit ofωe. The hydrogen atom mass is required
for the calculation of the vibrational frequencyωe, and in all
cases it has been taken from the periodic table.46

From the results in Table 1 and Figures 1 and 2, we can draw
the following conclusions:

From Table 1 and Figure 1, we see that the non-SCF values
are almost identical to the SCF ones. Therefore, the post-SCF
procedure constitutes an excellent approximation.

With the aim of studying the effect of the correlation potential
on the wave function, we have analyzed its influence in the
electron density. Figure 2 shows the difference between the
density obtained when the MPJ1 correlation potential is used
in the SCF procedure (GVB+MPJ1(SCF)) and that obtained
without this correlation potential (GVB or GVB+MPJ1). These
difference,δF, is quite small, although greater than the difference
in energy, which is of second order15,17 in δF. There is an
increase in charge in the nuclear and internuclear regions, where
the correlation energy potential is stronger.

Regarding the quality of the different approximations to the
correlation energy, we see that in all cases there is a significant
improvement over the GVB values. We can order the functionals
as follows (from best to worst): MPJ1, CS, and MPJ5. MPJ1
and CS show a similar quality, while MPJ5 overestimates the
dissociation energyDe for this system, although in ref 1 the
MPJ5 functional gives a smaller average error than MPJ1 for
the correlation energy of first-row atoms.
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