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Several aspects of hybrid methods resulting from combining multiconfigurational (MC) wave functions with
correlation energy functionals are discussed, in particular for a family of functionals recently prépdsed.

is found that adding the correlation at the end of a MC calculation instead of including it in the self-consistent
procedure constitutes an excellent approximation. MC potential energy curves and spectroscopic constants
show a significant improvement after being corrected with correlation energies from this family of functionals.

1. Introduction ok to the HF energy. The main advantage of such a post-SCF
| procedure is that the functional derivativé=][p]/dp is not
needed.

Although quite good for atomi$,the HFKS method does not
seem to be much of an improvement over the HF method for
molecular spectroscopic constants such as equilibrium distances
or vibrational frequencie¥. The reason is, as we have said, the
poor behavior of the HF method for bond dissociation. One
would expect that the use of MC wave functions instead of the
HF determinant would yield better results

Reliable potential energy surfaces are crucial for chemical
simulations. Since high-quality descriptions such as full-Cl wave
functions are out of the question for most systems, it would be
particularly interesting to develop a hybrid scheme combining
qualitatively correct multiconfigurational (MC) wave functions
with cheap but accurate approximations to the unaccounted
correlation energy.

These qualitatively correct wave functions have to be sought
beyond the monoconfigurational Hartreleock (HF) method,
which gives a poor descriptiénof bond dissociation. For
example, for the Himolecule, the restricted HF model (RHF)
severely overestimates the dissociation energy, while the
unrestricted HF model (UHF) breaks the spin symmetry. A whereEc uc is, by definition, the difference between the exact
biconfigurational general valence bdr(GVB) treatment of the and MC energies. Conventional DR p] functionals cannot
same molecule gives, on the other hand, a rather goodbe expected to provide a very good approximatiorEtquc

Eexact= Emc T Ec,Mc (€]

exac

description of the bond, includingroper dissociatioh into becausé; vc is only a fraction of the total correlation energy.

atomic fragments. Approximation229-39to E yc typically depend on quantities
Correlation energy is the difference between the exact and such as natural orbitals or reduced density matfi¢&dten they

HF energies. Density-functional theéry(DFT) provides ac- are expressed as functionals of tieeluced density matrix of

curate estimates of the correlation energy at a reasonable costsecond ordef”

through approximations to therrelation energy functional &

[p], wherep is the electron density (for a review on common Ecme ~ EJT] 4)
approximations, see, for example, ref 8). A particularly simple
approach is theHartree—Fock—Kohn—Sham method® 13
(HFKS), where the exact energy is expressed as the HF
functional Eye[p] plus the DFT correlation energy functional

These functionals can be applied indistinctly to mono- or
multiconfigurationall’s. For example, ifTyr andI'vc come,
respectively, from HF and MC wave functions, thefil'yg] is
_ a good approximation tcEcnr and EI'vc] is a good
Eexact_ EHF[p] + EC[P] (1) approximation tCEC,MC- o

) . . ) Recently, in our laboratory, a family &[I'] functionals has
An appealing feature of thEdp] is the possibility of imple- oo gevelopet238 Results over atomidye's have been
menting it within a post-SCF stef,because correlation is @  oncoyraging so far. The goal of the present study is twofold.
small perturbation that can be added afterward in a non'SCFFirst, we will check this family of functionals over molecular

fashi.on. .Pra'ctical experience shows that the following ap- T'uc's. Second, we will check if a post-SCF procedure analogous
proximation is very accurate!s/ to eq 2 is also accurate f@&[I].

Evele] + Edlpl ~ Epe + Edlpyel ) 2. Self-Consistent Calculations for GVB Wave Functions

so that it is possible to obtain good estimates of the exact energy In order to check the accuracy of the post-SCF scheme, we

by adding the correlation energy obtained from the HF density need, as a reference, a self-consistent procedure for GVB wave
functions. We briefly outline it next. For simplicity, we will

* Corresponding author. Email: sanfa@fisic1.ua.es. restrict ourselves to theHnolecule and to this wave function,
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although we are working on other larger systems and more TABLE 1: Spectroscopic Constants for the H Molecule

sophisticated wave functions.
For hydrogen, the GVB wave functidfhis composed of two
determinants

Wave = C1|¢1‘$1D+ Cz|¢2‘?’2[| )

where the symbolqbig?biDdenot_es a Slater determinagt, and
¢, are a orbitals, and arep, and ¢, their respectives
counterparts.

A self-consistent calculation for the previous wave function
is carried out in two steps. During the first step, the coefficients
C; are kept fixed while the orbitals are optimized. During the

second step, the situation is reversed, and the orbitals are kept

fixed while the coefficients are optimized. These two steps are
repeated iteratively until self-consistency is achieved.

The first step is carried by means of a Fock-like operator
(note, however, that unlike the HF operator, this GVB operator
takes a different form for each orbital). The correlation
functional E([I'] enters the calculations here, as a correlation
potential that is added to the Fock-like operator. The correlation
potential is the functional derivative &[I'] with respect to
i, OE[T')/0¢i. The explicit form of this potential for our family
of functionald-2 is given in ref 2.

The second step, the optimization of the coefficients, is simply
the minimization of

IltlpGVB| H |IPGVB|:| (6)
while the orbitals are kept constant and whefeis the
Hamiltonian operator. It is carried out by diagonalization of the
2 x 2 matrix H, with elements

H; = [ |H |30 (7)

We explain next how to include, in an approximate way, the
contribution from the correlation functional to the optimization
of the coefficients.

Our approximatioh? to E[T'] depends of” through theon-
top density p,(r), which can be expressed as

pt) = [ T(ro,, 10, 1oy, r0,) doydo, (8)
(Léwdin criteriorf© is assumed) or, alternatively, as
po(r) = Weyglo(r —ry) O(r — 1) |Wgysl 9)
EJI] is given'2 by
E[IT =27 [ py(r) I(r) dr (10)

wherel(r) is a function with explicit dependence rand p,.
Taking into account eq 9, we can rewrig[I'] as

EJ[T] =27 Wgygl I(ry) o(ry — ry)|Wewsll (11)
Comparison with eq 6 would suggest that diagonalization of
the 2 x 2 matrixH" with elements

Hy = H; + 27 1) o(r, — 1)l¢$0

would yield the optimum coefficients. This is not strictly so,
becausé(r) depends explicitly on the coefficients that are being
optimized. We will assume, however, that this dependence is
weak and can be neglected. As we will see in the next section,
inclusion of correlation in a self-consistent fashion has very little
effect on the results. We do not believe that consideration of

(12)

Re (au) we (cm™?) De (eV)
GVB 1.426 4226 4.142
GVB+CS 1.411 4340 4.725
GVB+MPJ1 1.409 4358 4.753
GVB+MPJ1 (SCF) 1.409 4354 4.751
GVB+MPJ5 1.400 4429 4.937
GVB+MPJ5 (SCF) 1.400 4422 4.938
exact 1.401 4405 4.748
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Figure 1. Potential energy curves for the;lfholecule.
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Figure 2. Difference,dp, between GVB-MPJ1 (SCF) and GVBMPJ1
densities aR = 1.40 au (both axes in au).

the explicit dependence &fr) on the coefficients will change
this conclusion.

3. Results and Conclusions

In this section we present some results for thentblecule.
All the calculations in Table 1 and Figures 1 and 2 have been
carried out with the package GAMES3S5using the basis set
aug-cc-pVQZ*2 The correlation energy is evaluated by numer-
ical integratior?'® “GVB” refers to a GVB calculation, “GVB-+
--” is a GVB calculation corrected by adding a given correlation
energy model in a post-SCF non-self-consistent fashion, and
“GVB+--+(SCF)” denotes the analogous calculation but with
the correlation included in the SCF procedure, in the way
explained in the previous section. The ellipsis may stand for
“CS” (Colle—Salvett?d), “MPJ1” (Moscardaand Peez-Jini@ez,
level 1-9), or “MPJ5” (Moscardand Peez-Jin@ez, level 39).
Entries labeled “exact”, used here as a reference, come from
the work of Kolos and Wolniewic#
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The spectroscopic constants in Table 1 and the curves in  (3) Szabo, A.; Ostlund, N. $4odern Quantum ChemistricGraw-

; ; ; ; Hill Publishing: New York, 1989.
Figure 1 have been obtained from sets of enexgigtance points (4) Bobrowicz, F. W.; Goddard, W. A., Ill. IMethods of Electronic

on the potential energy curve, ranging from 0.7 to 10.0 au at gyrycture TheorySchaefer, H. F., Ill, Ed.; Plenum: New York, 1977; pp
intervals of 0.1 au, giving a total of 94 points. The spectroscopic 79-127.

constants have been computed from a least-squares fit of the (5) Rama Krishna, M. VJ. Comput. Chemi99Q 11, 629.

. S . (6) Hohenberg, P.; Kohn, WPhys. Re. B 1964 136, 864.
94 points to a polynomial in the varialife (7) Kohn, W.: Sham, L. JPhys. Re. A 1965 140, 1133.

(8) Kohn, W.; Becke, A. D.; Parr, R. Gl. Phys. Chem1996 100,

R—R, 12974.
7= (13) (9) Baroni, S.; Tuncel, EJ. Chem. Phys1983 79, 6140.
R+ R, (10) Wilk, L.; Vosko, S. H.J. Phys. C1982 15, 2139.
(11) Savin, A.; Wedig, U.; Stoll, H.; Preuss, Bhem. Phys. Letil982
, . ) ) , 92, 503.
whereR is the internuclear distance af) is an adjustable (12) Kemister, G.; Nordholm, Sl. Chem. Phys1985 83, 5163.

parameter. The order of the fitting polynomial and the value of " (Il3) IPag, fR-dGL-J; Yang, WgenSity’;lFun%tiOfllallgggory of Atoms and
H HP olecule: XTOr niversit ress: ew YOrK, .
Ro have b_een _opt|m|zed_so that they mlmm_lze the round-off (14) S?oll, H.; Pavlidou, )(lZ M. E.; Preuss, fheor. Chim. Actd 978
error. An identical technique has been applied to the “exact” 49 143,
data points from Kolos and WolniewicZ’spaper. We have (15) Vosko, S. H.; Wilk, L.J. Phys. B198316, 3687.
i i i (16) Stoll, H.; Savin, A. InDensity Functional Methods in Physjcs
ﬁ]pgllg:rttr;eciirglftﬁ:g(e:gﬁ::(fo half the data points (even p.omtS)DreizIer, R. M., da Providencia, J., Eds.; Plenum: New York, 1985; pp
y of our values. We feel confident 177-557.
that all the constants shown in Table 1 are correct, except (17) Lagowski, J. B.; Vosko, S. Hl. Phys. B1988 21, 203.
perhaps the last digit @f.. The hydrogen atom mass is required ~ (18) Savin, A.; Stoll, H.; Preuss, Hheor. Chim. Actdl986 70, 407.

for the calculation of the vibrational frequeney, and in all (19) Peez-Jorda). M.; San-Falsia, E.; MoscardoF. Phys. Re. A1092

. e 45, 4407.
cases it has been taken from the periodic t4ble. (20) Lie, G. C.: Clementi, EJ. Chem. PhysL974 60, 1275.
From the results in Table 1 and Figures 1 and 2, we can draw (21) Lie, G. C.; Clementi, EJ. Chem. Phys1974 60, 1288.
the following conclusions: (22) Colle, R.; Salvetti, OTheor. Chim. Actal975 37, 329.

. 23) Colle, R.; Salvetti, OTheor. Chim. Actdl979 53, 55.
From Table 1 and Figure 1, we see that the non-SCF values §24g Colle, R.: Salvetti, 0J. Chem. Phys199Q 9;9’3, 534.

are almost identical to the SCF ones. Therefore, the post-SCF (25) Gritsenko, O. V.; Bagaturyants, A. A.; Zhidomirov, G. Mt. J.

procedure constitutes an excellent approximation. Quéfg)unér%:%%g %/0'_ gildomirov G. MChem, Phys1687 116 21
With the aim of s'gudylng the effect of the c_orrglanon pot_entlal (27) Savin, A.Int. J. Quantum Chem.: Quantum Chem. Syag88§

on the wave function, we have analyzed its influence in the 22 s9.

electron density. Figure 2 shows the difference between the ggg ga\(in,ﬁ-IJ-DChimtyl;hySilQSQI ?AG,JFS- in Chemistiab y

density obtained when the MPJ1 correlation potential is used avin, A. Inbensity Functional MEods In Lhemisthabanowski,

. . J. K., Andzelm, J. W., Eds.; Springer-Verlag: New York, 1991; pp-213

in the SCF procedure (GVBMPJ1(SCF)) and that obtained 539, pring g PP

without this correlation potential (GVB or GVBMPJ1). These (30) Savin, A. InRecent deelopments in Density Functional Theory.

differencedp, is quite small, although greater than the difference Theoretical and Computational Chemisti§eminario, J. M., Ed.; Elsevi-
er: Amsterdam, 1996.

in energy, which is of second ord&’in dp. There is an (31) Miehlich, B.; Stoll, H.; Savin, AMol. Phys.1997 91, 527.
increase in charge in the nuclear and internuclear regions, where (32) Malcolm, N. O. J.; McDouall, J. J. W. Phys. Chem1996 100,
the correlation energy potential is stronger. 10131.

Regarding the quality of the different approximations to the 81%?’) Malcolm, N. O. J.; McDouall, J. J. W. Phys. Cheml997, 101,

correlation energy, we see that in all cases there is a significant  (34) Malcolm, N. O. J.; McDouall, J. J. WChem. Phys. Lettl998
improvement over the GVB values. We can order the functionals 282 121.

as follows (from best to worst): MPJ1, CS, and MPJ5. MPJ1 (3%5052"’512';430“6‘”- K. D.; Nichols, J.; NachtigallTReor. Chem.
and CS show a similar quality, while MPJ5 overestimates the C((:ée) hﬁosc’ardo'ﬁ; San-Fabia, E. Phys. Re. A 1991, 44, 1549.

dissociation energye for this system, although in ref 1 the (37) MoscardoF.; San-Falia, E.Int. J. Quantum Chen1.991, 40, 23.
MPJ5 functional gives a smaller average error than MPJ1 for _ (38) MoscardoF.; Peez-Jinimez, A. J.J. Mol. Struct.. THEOCHEM

. . 1998 426, 47.
the correlation energy of first-row atoms. (39) Mok, D. K. W.: Neumann, R.; Handy, N. G. Phys. Chemi996

100, 6225.
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